IPADS, Shanghai Jiao Tong University o) P2 ﬁj){ﬁ/ﬁfi

SHANGHAI JIAO TONG UNIVERST

EPTI: Efficient Defence against Meltdown
Attack for Unpatched VMs

Zhichao Hua, Dong Du, Yubin Xia, Haibo Chen, Binyu Zang

| Meltdown Attack

/| .data

@ ,// Key:
text \ # | 0x0000 0001
Attack:
LD RAX, Key
LD RBX, S[RAX] cernel
Probe: user
------ CPU
data = JTTTTeeemmemeee—e- Key > RAX 0 Permission Check
- Error !
s | 7 S[RAX_0] = RBX
............ \\Eache
g Exception!!
Rollback!! xKey = 1
Probe()

| KPTI (Kernel Page Table Isolation)

* Meltdown
— Hardware bug at pipeline level
— Exist in all Intel CPUs

— Cannot fixed by micro-code patch

 KPTI
— Two page tables (for kernel and user mode)
— Remove kernel mapping in user page table

— Switching page table during user/kernel switching

| Problems of KPTI

 KPTI has to be patched manually

— In cloud environment, many cloud users are not capable of doing such
system maintenance

* KPTI patch depends on specific versions of kernel

— "Just got the Meltdown update to kernel linux-image-4.4.0-108-generic
but this does not boot at all”

* |ncur non-trivial performance slowdown
— Up to 30% overhead in VMs

| Goals of EPTI

* Security

— Defend against Meltdown

* Usability
— (Can be applied to unpatched guest VMs (independent on kernel version)

— Seamless deployment without rebooting the VM

e Performance

— Lower performance overhead than KPT]

| Overview

Construct two different mappings

— For guest user and kernel

— By controlling EPT

 EPT-k for kernel and EPT-u for user

kernel

Enable protection on guest VM user

kernel

— Add trampoline at kernel enter/exit point

— Leverage VMFUNC to perform EPT switching

— Binary rewriting

Kernel
mapping

User
mapping

| Kernel Space Isolation

Naive method:

— Remove kernel GPA-to-HPA mapping

— Difficult to identify kernel GPA

Kernel always map all GPA

kernel

EPT

<

gPT
GVA GPA
(Guest Virtual (Guest Physical
Address Space) Address Space)

HPA

(Host Physical
Address Space)

| Kernel Space Isolation

EPTI method:
— Remove kernel GVA-to-GPA mapping

kernel

EPT

<

gPT
GVA GPA
(Guest Virtual (Guest Physical
Address Space) Address Space)

HPA

(Host Physical
Address Space)

| Kernel Space Isolation

EPTI method:
— Remove kernel GVA-to-GPA mapping

— Remap gPT page for kernel mapping

Contains kernel GVA-to-GPA mapping

To a zeroed HPA page

gPT

gPT page
I vy
kernel
user
GVA

(Guest Virtual
Address Space)

GPA
(Guest Physical
Address Space)

EPT-u

EPT:k

00000000

HPA

(Host Physical
Address Space)

Kernel Space Isolation

* Remap glL3 page
— All processes share the same gL3
pages for kernel mapping
— Remap glL3 pages to a new host
physical pages in EPT-u

— Zero the kernel GVA-to-GPA
maping in EPT-u

kernel

glL4 glL3 glL2 gLl
I g e
> > —>
| I
EPT-k | EPT-u |

0000

0000

Host Physical
Page

| Tracing gL3 pages

* Trace all enabled kernel gL3 pages
— Step-1: Trap MOV to CR3 to get all gL4 pages
— Step-2: Trap all write access to glL4 pages to get enabled kernel
glL3 page
* Problem: causes a lot of VMEXxits
— Both loading CR3 and write gL4 pages cause VMEXits
— CPU updating access/dirty-bit causes VMEXits

10

| OPT-1. Selectively Tracking Guest CR3

* Only need to trap loading new guest CR3

* Not trap loading frequently-loaded old guest CR3
— Four CR3_TARGET_VALUE fields in VMCS

 Load-CR3 with the value in these fields will not cause VMExit

11

I OPT-2. Trapping gL3 Instead of gL4

* Kernel memory layout Is fixed

— Linux reserves memory regions for different usages
* E.g., Oxffff880000000000 to Oxffffc/ffffffffff for direct map
* E.g., ffffc90000000000 - ffffe8ffffffffff for vmalloc/ioremap

— Only parts of these regions change at runtime

* Kernel creates a new gL3 page (mapping 512GB) when all entries of existing
glL3 pages are in use

12

I OPT-2. Trapping gL3 Instead of gL4

Trap write access on kernel gL3 pages

— A new gL3 page Is added until the last entry of a
gL3 page is used

glL4

R glL3 |

13

Write
Protection

I OPT-2. Trapping gL3 Instead of gL4

Trap write access on kernel gL3 pages

— A new gL3 page Is added until the last entry of a
gL3 page is used

glL4

R glL3 |

13

Write
Protection

I OPT-2. Trapping gL3 Instead of gL4

Write
Protection

* Trap write access on kernel gL3 pages
glL4 1 R glL3

— A new gL3 page Is added until the last entry of a
gL3 page is used kernel

* Trap write access on glL4 page

— When one gL3 page’ s last entry is used

I OPT-2. Trapping gL3 Instead of gL4

Write
Protection

* Trap write access on kernel gL3 pages
glL4 1 R glL3

— A new gL3 page Is added until the last entry of a
gL3 page is used kernel

* Trap write access on glL4 page

— When one gL3 page’ s last entry is used

I OPT-2. Trapping gL3 Instead of gL4

 Trap write access on kernel gL3 pages "
g

13

Write
Protection

glL3 l

— A new gL3 page Is added until the last entry of a

gL3 page is used kernel

 Trap write access on glL4 page

— When one gL3 page’ s last entry is used

* Kernel rarely adds new gL3 page

— One gL3 page maps 512GB memory region

| OPT-3. Setting gPT Access/Dirty-Bit

Different access path between CPU and kernel

— CPU accesses gPT by GPA
— Kernel accesses gPT by GVA

Construct different mapping for CPU and kernel access

— Map gPT page’ s GPA as RW in EPT-k
— Map gPT page’ s GVA to new GPA and
map the GPA as R.O in EPT-k

gPT
page

N

GVA

GPA

R.O

14

HPA

15
| Trampoline

* Trampoline switches EPT at kernel enter/exit point
— All kernel entries are stored in IDT or some specific MSRs

— Exit point must contain specific instructions (e.g., sysretq)

* Map trampoline page in EPT-u

Trampoline
— Two kernel pages in EPT-u ,_Page
gL4 gL3 gL2 gLl
Trampoline code page I N R
. 00000000 00000000
o Reg—savmg page 00000000 00000000 00000000
___________________ - 00000000 00000000 00000000 Reg-saving
_ page

>

| Seamless Protection

Combing EPTI with live migration

|. Live migrate a VM to a host with EPTI
Il. Construct EPT-k and EPT-u for the VM before resuming
IIl. Detect all kernel enter/exit points

IV. Inject trampoline with binary rewrite
V. Resume the VM

16

| Malicious EPT Switching

* VMFUNC can be executed In user mode

— Attacker can switch to EPT-K and perform Meltdown attack

e Make EPT-k useless in user mode

— All memory except kernel code and kernel module are non-
executable

— No instruction fetch after switching to EPT-k in user mode

17

Fvaluation

Hardware platform
— Intel Core i7-7700 (eight 3.6GHZ cores)
— 16GB memory

Software environment
— Host Linux 4.9.75 + KVM
— Guest Linux 4.9.75

Guest environment
— 4 vCPU (each vCPU is pinned on one physical core)

— 8GB memory

18

| VMFUNC vs. MOV to CR3

* |nstruction cycle
— VMFUNC: ~160 cycles
— MOV to CR3: ~300 cycles

* TLB behavior
— EPT switching does not flush TLB

19

Action Access again Access again
in EPT-0 in EPT-1
Invalid both EPTs’ TLBs then fill EPT-0’s TLB 3-5 cycles 120+ cycles
Fill both EPTs’ TLBs then write CR3 in EPT-0 120+ cycles 120+ cycles
Fill both EPTs’ TLBs then invipg in EPT-0 120+ cycles 120+ cycles

| Micro-benchmark

Lmbench

Operation (us) Linux | KPTI | EPTI- EPTI- EPTI-
No CR3 CR3+13

Null syscall 0.04 | 0.16 | 0.12 0.12 0.12
Null /O 0.07 0.2 0.17 0.17 0.16
Open/Close 0.70 | 0.93 0.84 0.84 0.83
Signal Handle 0.68 0.81 0.76 0.76 0.76
Fork syscall 72.9 79 80 80 75
Exec syscall 212 243 242 234 221
ctsw 16P/64K 6.07 7.37 7.66 7.66 6.39

20

21

| Application Overhead

* Redis throughput
— Average overhead: KPTI 12%, EPTI 6%
— Worst case: KPTI 20%, EPTI 12% S B —

KPTI EXXX
EPTI-CR3+L3 B8

XXX

XX

~)
o
o

XXX

=

O-

T

XXXX

2

=l
o

o
o

Throughput of Redis (kops)
N W A W
S S
=] =]

[a—
e
(e

s)

0'_00'0'0000000000000000

e P

SET-1 GET-1 SET-2 GET-2 SET-4 GET-4 SET-8 GET-8

IR KAXKY

el &
o%! Pl L2e. Pa$

o

22

| Application Overhead

Apache throughput

TEFER
I.mmN_C%W
“¥EER
E_MCW

A

cN

L
S S
o0 r~

— KPTI 15%-18%

(sdoy) ayoedy jo indySnouyy,

~10%

— EPTI

23

EPTI Optimization

* Load CR3 works for frequently switching between limited CR3
values (e.g., apache)

* Trapping gL3 reduces all the VMEXits

Benchmark EPTI-No EPTI-CR3 EPTI-CR3+L3

Redis 1-thread 540 464 0

Redis 8-thread 385 315 0

Apache 4-thread 45406 225 0 EPTI-NO : A/D-bit
Apache 32-thread 40149 623 0 e CReA/D-bIt + load
Compile Kernel -j8 609659 551023 0 EPTI-CR3+L3: all opts

| Different Kernel Versions

Apache throughput of different Linux versions
— In Linux 4.15 (PCID enabled)

KPTI 17%
EPTI 10%

A}
J

8.0

7.0

6.0

>
o

g
o

Throughput of Apache on diff kernels (kops

24

oy
o

T

T

q %
8504

T T

Linux N
KPTI EXXX
EPTI-CR3+1.3 B8 A

°
oy
ooess

4.15

%
%
%5

201

3440 2.630

| Conclusion
* Providing a new Meltdown defense method

* Protect unmodified guest VM

— Work on different kernel versions

* Seamless protection
— Without guest rebooting

* Low performance overhead

25

Thanks

Institute of Parallel And Distributed Systems (IPADS)
http://ipads.se.sjtu.edu.cn

26

