
EPTI: Efficient Defence against Meltdown
Attack for Unpatched VMs

IPADS, Shanghai Jiao Tong University

Zhichao Hua, Dong Du, Yubin Xia, Haibo Chen, Binyu Zang

Meltdown Attack
2

.text

Attack:
LD RAX, Key
LD RBX, S[RAX]

Probe:

.data

S:
……

.data

Key:
0x0000 0001

.
Key à RAX_0

S[RAX_0] à RBX

Exception!!
Rollback!!

Probe()

Cache

Permission Check
Error !!!

CPU

*Key = 1

kernel

user

KPTI (Kernel Page Table Isolation)
3

• Meltdown
– Hardware bug at pipeline level

– Exist in all Intel CPUs

– Cannot fixed by micro-code patch

• KPTI
– Two page tables (for kernel and user mode)

– Remove kernel mapping in user page table

– Switching page table during user/kernel switching

Problems of KPTI
4

• KPTI has to be patched manually
– In cloud environment, many cloud users are not capable of doing such

system maintenance

• KPTI patch depends on specific versions of kernel
– "just got the Meltdown update to kernel linux-image-4.4.0-108-generic

but this does not boot at all”

• Incur non-trivial performance slowdown
– Up to 30% overhead in VMs

Goals of EPTI
5

• Security
– Defend against Meltdown

• Usability
– Can be applied to unpatched guest VMs (independent on kernel version)

– Seamless deployment without rebooting the VM

• Performance
– Lower performance overhead than KPTI

• Construct two different mappings
– For guest user and kernel

– By controlling EPT
• EPT-k for kernel and EPT-u for user

• Enable protection on guest VM
– Add trampoline at kernel enter/exit point

– Leverage VMFUNC to perform EPT switching

– Binary rewriting

Overview
6

kernel

user

kernel

user

Kernel
mapping

User
mapping

• Naïve method:
– Remove kernel GPA-to-HPA mapping

– Difficult to identify kernel GPA
• Kernel always map all GPA

Kernel Space Isolation
7

kernel

user

GVA
(Guest Virtual

Address Space)

GPA
(Guest Physical
Address Space)

HPA
(Host Physical

Address Space)

EPT

gPT

• EPTI method:
– Remove kernel GVA-to-GPA mapping

Kernel Space Isolation
8

kernel

user

GVA
(Guest Virtual

Address Space)

GPA
(Guest Physical
Address Space)

HPA
(Host Physical

Address Space)

EPT

gPT

• EPTI method:
– Remove kernel GVA-to-GPA mapping

– Remap gPT page for kernel mapping
• Contains kernel GVA-to-GPA mapping

• To a zeroed HPA page

Kernel Space Isolation
8

kernel

user

GVA
(Guest Virtual

Address Space)

GPA
(Guest Physical
Address Space)

HPA
(Host Physical

Address Space)

gPT

00000000

EPT-k

EPT-u

gPT page

• Remap gL3 page
– All processes share the same gL3

pages for kernel mapping

– Remap gL3 pages to a new host
physical pages in EPT-u

– Zero the kernel GVA-to-GPA
maping in EPT-u

Kernel Space Isolation
9

kernel

user

gL4 gL3 gL2 gL1

kernel

user
0000

0000

Host Physical
Page

EPT-k EPT-u

• Trace all enabled kernel gL3 pages
– Step-1: Trap MOV to CR3 to get all gL4 pages

– Step-2: Trap all write access to gL4 pages to get enabled kernel
gL3 page

• Problem: causes a lot of VMExits

– Both loading CR3 and write gL4 pages cause VMExits

– CPU updating access/dirty-bit causes VMExits

Tracing gL3 pages
10

• Only need to trap loading new guest CR3

• Not trap loading frequently-loaded old guest CR3
– Four CR3_TARGET_VALUE fields in VMCS

• Load-CR3 with the value in these fields will not cause VMExit

OPT-1. Selectively Tracking Guest CR3
11

• Kernel memory layout is fixed
– Linux reserves memory regions for different usages

• E.g., 0xffff880000000000 to 0xffffc7ffffffffff for direct map

• E.g., ffffc90000000000 - ffffe8ffffffffff for vmalloc/ioremap

– Only parts of these regions change at runtime
• Kernel creates a new gL3 page (mapping 512GB) when all entries of existing

gL3 pages are in use

OPT-2. Trapping gL3 Instead of gL4
12

• Trap write access on kernel gL3 pages
– A new gL3 page is added until the last entry of a

gL3 page is used

OPT-2. Trapping gL3 Instead of gL4
13

kernel

user

gL4 gL3

Write
Protection

OPT-2. Trapping gL3 Instead of gL4
13

kernel

user

gL4 gL3

Write
Protection• Trap write access on kernel gL3 pages

– A new gL3 page is added until the last entry of a
gL3 page is used

OPT-2. Trapping gL3 Instead of gL4
13

kernel

user

gL4 gL3

Write
Protection• Trap write access on kernel gL3 pages

– A new gL3 page is added until the last entry of a
gL3 page is used

• Trap write access on gL4 page

– When one gL3 page’s last entry is used

OPT-2. Trapping gL3 Instead of gL4
13

kernel

user

gL4 gL3

Write
Protection• Trap write access on kernel gL3 pages

– A new gL3 page is added until the last entry of a
gL3 page is used

• Trap write access on gL4 page

– When one gL3 page’s last entry is used

OPT-2. Trapping gL3 Instead of gL4
13

kernel

user

gL4 gL3

Write
Protection• Trap write access on kernel gL3 pages

– A new gL3 page is added until the last entry of a
gL3 page is used

• Trap write access on gL4 page
– When one gL3 page’s last entry is used

• Kernel rarely adds new gL3 page

– One gL3 page maps 512GB memory region

• Different access path between CPU and kernel

– CPU accesses gPT by GPA

– Kernel accesses gPT by GVA

• Construct different mapping for CPU and kernel access
– Map gPT page’s GPA as R.W in EPT-k

– Map gPT page’s GVA to new GPA and

map the GPA as R.O in EPT-k

OPT-3. Setting gPT Access/Dirty-Bit
14

gPT
page

GVA GPA HPA

R.W

R.O

• Trampoline switches EPT at kernel enter/exit point
– All kernel entries are stored in IDT or some specific MSRs

– Exit point must contain specific instructions (e.g., sysretq)

• Map trampoline page in EPT-u
– Two kernel pages in EPT-u

• Trampoline code page

• Reg-saving page

00000000
00000000

Trampoline
15

gL4 gL3 gL2 gL1

00000000
00000000

00000000

00000000
00000000
00000000
00000000

00000000

00000000
00000000

00000000

00000000

Trampoline
page

Reg-saving
page

• Combing EPTI with live migration
– I. Live migrate a VM to a host with EPTI

– II. Construct EPT-k and EPT-u for the VM before resuming

– III. Detect all kernel enter/exit points

– IV. Inject trampoline with binary rewrite

– V. Resume the VM

Seamless Protection
16

• VMFUNC can be executed in user mode
– Attacker can switch to EPT-K and perform Meltdown attack

• Make EPT-k useless in user mode
– All memory except kernel code and kernel module are non-

executable

– No instruction fetch after switching to EPT-k in user mode

Malicious EPT Switching
17

Evaluation

• Hardware platform
– Intel Core i7-7700 (eight 3.6GHZ cores)

– 16GB memory

• Software environment
– Host Linux 4.9.75 + KVM

– Guest Linux 4.9.75

• Guest environment
– 4 vCPU (each vCPU is pinned on one physical core)

– 8GB memory

18

VMFUNC vs. MOV to CR3

• Instruction cycle

– VMFUNC: ~160 cycles

– MOV to CR3: ~300 cycles

• TLB behavior

– EPT switching does not flush TLB

19

Micro-benchmark

• Lmbench

20

Application Overhead
21

• Redis throughput

– Average overhead: KPTI 12%, EPTI 6%

– Worst case: KPTI 20%, EPTI 12%

Application Overhead
22

• Apache throughput

– KPTI 15%-18%

– EPTI ~10%

EPTI Optimization
23

• Load CR3 works for frequently switching between limited CR3
values (e.g., apache)

• Trapping gL3 reduces all the VMExits

EPTI-NO : A/D-bit
EPTI-CR3: A/D-bit + load
CR3
EPTI-CR3+L3: all opts

Different Kernel Versions
24

• Apache throughput of different Linux versions

– In Linux 4.15 (PCID enabled)
• KPTI 17%

• EPTI 10%

Conclusion

• Providing a new Meltdown defense method

• Protect unmodified guest VM
– Work on different kernel versions

• Seamless protection
– Without guest rebooting

• Low performance overhead

25

26

Thanks

Institute	of	Parallel	And	Distributed	Systems	(IPADS)
http://ipads.se.sjtu.edu.cn

