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Talk Outline

➤ Background and Motivation 
➤ Window-based Entropy Model 
➤ Analyzing Entropy Distribution for GPU Workloads 
➤ PAE and FAE Address Mapping Schemes 
➤ Evaluation
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➤ It quantifies the amount of information contained 

       in a sequence of values. 



Shannon Entropy 

➤ It quantifies the amount of information contained 

       in a sequence of values. 

Informally, a value that changes 

1. frequently contains lots of information and has high entropy 

1. rarely contains little information and has low entropy
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Why Entropy Valley for GPUs?

➤ GPU thread organization: multi-dimensional structures 
● Grid, Block, Warp, Thread

➤ DRAM hardware organization: multi-dimensional structures 
● Channel, Bank, Row, Column



Why Entropy Valley for GPUs?

➤ GPU thread organization: multi-dimensional structures 
● Grid, Block, Warp, Thread

➤ DRAM hardware organization: multi-dimensional structures 
● Channel, Bank, Row, Column

Once these two organizations combine unfavorably, 

Entropy valleys will occur
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Channel Imbalance of NW benchmark



GPU Workloads’ Entropy

➤ GPU’s Entropy 
● Memory requests are highly interleaved 
● Requests from single TB co-exist : Intra-TB Entropy 
● Requests from concurrent TBs co-exist : Inter-TB Entropy

How to quantify the address entropy for GPU workloads?

➤ CPU’s Entropy 
● Memory request ordering 
● Bit Flip Rate



GPU Workloads’ Entropy

➤ Window-based Entropy 
● Motivation: capture coexisting memory requests 
● Accounts for both Intra- and Inter-TB entropy 



GPU Workloads’ Entropy

➤ BVR: Bit Value Rate 
➤ p*

BVR : probability of each BVR value 
➤ W    : window size  
➤ Hi

W  : entropy value of Window-i 
➤ H*    : the average entropy of all windows

➤ Window-based Entropy 
● Motivation: capture coexisting memory requests 
● Accounts for both Intra- and Inter-TB entropy 



Window-based Entropy
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Window-based Entropy #1
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Window-based Entropy #2
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Window-based Entropy #5
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Window-based Entropy #6
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Window-based Entropy #7
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Window-based Entropy #7

BVR = 100%

BVR = 0%

Window # 1 2 3 4 5 6 7

#BVR 100% TBs 0 1 2 1 0 1 2

#BVR 0% TBs 2 1 0 1 2 1 0

Window Entropy 0 1 0 1 0 1 0

1 32 4 5 76 8

Window Size = 2 
H* = 3/7 = 0.43



Window-based Entropy (Size = 4) 

BVR = 100%

BVR = 0%

Window # 1 2 3 4 5

#BVR 100% TBs 2 2 2 2 2

#BVR 0% TBs 2 2 2 2 2

Window Entropy 1 1 1 1 1

1 32 4 5 76 8

Window Size = 4 
H* = 5/5 = 1



How to Choose Window Size?

➤ Window size is affected by: 
● Application, i.e, each TB’s hardware requirement 
● GPU architecture, i.e, #SMs, warp scheduling policy

➤ Maximum window size is GPU hardware capacity 
● #SMs 
● Hardware resources / SM

➤ Warp scheduling policy affects concurrent running TBs 
● GTO policy: #SMs * 1 
● LRR policy: #SMs * ( TBs/SM )



Entropy Valley Workloads
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➤ Channel & Bank selection



Entropy Valleys of Applications and Kernels

SRAD2 Kernel-1 of SRAD2

➤ Similar behavior

DWT2D

➤ Different behavior

Kernel-1 of DWT2D



Address Mapping

➤ Entropy valley in the channel or bank bits limit parallelism 

➤ High GPU’s memory bandwidth depends on                    
Memory-level parallelism (MLP) 
● Channel-level Parallelism (CLP) 
● Bank-level Parallelism (BLP)

Get Out of the Valley: 
 Power-Efficient Address Mapping for GPUs



BIM Abstraction

➤ Binary Invertible Matrix (BIM) is a generic abstraction for 
representing all address mapping schemes 
● Matrix-vector product 
● Invertible criterion: 1-to-1 mapping 
● Multiplication maps to bit-wise AND-operation 
● Addition maps to XOR-operation
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Remap Address Mapping (RMP)
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➤ RMP scheme: remap high and low bits



Remap Address Mapping (RMP)
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Permutation-Based Address Mapping (PM)

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

Row r2 Row r1 Row r0 Channel c Bank b R2 R1 R0 C B

➤ PM scheme: XOR channel or bank bits with a row bits



Permutation-Based Address Mapping (PM)
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➤ PM scheme: XOR channel or bank bits with a row bits



PM Address mapping

➤ Concentrate row bits’ 
entropy into channel 
and bank bits

Row Channel Bank Column Block

Row Channel Bank Column Block

 Bit-wise XOR with least significant row bits

Drawback: 

1. Low entropy of row bits 
2. Application-dependent



Broad Address Mapping

➤ Harvest entropy across a broad selection of address bits

1. Page Address Entropy (PAE): gathers entropy from page 
address bits to generate new bank and channel bits   

1. Full Address Entropy (FAE): gathers entropy from full 
address bits to generate new bank and channel bits  

1. All Address Mapping (ALL): gathers entropy from full 
address bits to generate full bits



PAE Address Mapping

Row Channel Bank Column Block
➤ Input: page address 
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Row Channel Bank Column Block

➤ Output: channel and 
bank bits



FAE Address Mapping

Row Channel Bank Column Block
➤ Input: full address 
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ALL Address Mapping

Row Channel Bank Column Block
➤ Input: full address 

bits

Binary Invertible Matrix (BIM)

Row Channel Bank Column Block

➤ Output: full address 
bits



Experimental Methodology

I GPU Architecture:
I 12 SMs running at 1.4Ghz
I Max TBs per SM is 8, Max warps per SM is 48

I 1GB Hynix’ GDDR5, similar with MICRO111

Row ColBank BlockColB Ch
05678910111415171829

I Address mapping schemes:
I BASE scheme
I RMP scheme
I PM scheme
I PAE, FAE, ALL schemes

1Minimalist Open-page: A DRAM Page-mode Scheduling Policy for the
Many-core Era



Performance vs. DRAM power consumption
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I PAE is most power-efficient, achieving an average 1.52x
speedup while consuming 3% more DRAM power

I FAE and ALL are slightly performance-wise (1.56x and 1.54x
speedup) but consume 35% and 45% more DRAM power,
respectively



Performance Improvement
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I PAE, FAE and ALL lead to dramatic speedups averaging to
1.52x, 1.56x and 1.54x, respectively



DRAM Power Consumption

MT LU GS NW LPS SC SRAD2 DWT2D HS SP AVG0
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I Address mapping primarily affects the activate power

I PAE has a small increase in DRAM power consumption by 3%
on average

I FAE and ALL lead to a substantial increase in DRAM power
consumption, by 35% and 45% on average



Total System (GPU+DRAM) Power Consumption
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I PAE, FAE and ALL increase system power consumption
increases by 9%, 15% and 18% on average

I PAE, FAE and ALL improve performance per Watt by 1.39x,
1.36x and 1.31x on average respectively



NoC Packet Latency and LLC Miss Rate
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I Serialized memory access stream leads to a dramatically high
NoC packet latency and LLC miss rate

I PAE, FAE and ALL distribute the accesses uniformly and
ultimately lead to a dramatic reduction



Memory Level Parallelism
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I PAE, FAE and ALL improve memory level parallelism
including LLC level, channel level and bank level parallelism



Row Buffer Hit Rates

I Tradeoff between bank level parallelism and row buffer locality
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I PAE creates sufficiently good load balancing while keeping
good-locality requests within the same bank

I FAE sometimes reduces row buffer hit rates as it distributes
good-locality requests to different banks



Sensitivity

12 SMs conv. DRAM 24 SMs conv. DRAM 48 SMs conv. DRAM 64 SMs 3D DRAM0.0
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I PAE, FAE and ALL consistently improve performance across
SM counts (from 12 to 48)

I 3D stacked memory system with 64 SMs:
I PAE, FAE and ALL still achieve high performance
I RMP performs similarly to BASE since it cannot have enough

high entropy bits to achieve good load balancing



Conclusions

I Provided a window-based entropy analysis tailored for the
highly concurrent memory request behavior in
GPU-compute workloads

I Observed that GPU-compute workloads exhibit entropy
valleys distributed throughout the lower order address bits

I Developed Page Address Entropy (PAE) mapping scheme
which provide significantly higher performance and
power-efficiency than previously proposed address
mapping schemes



Thank you!

Questions?
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