
Get Out of the Valley:
 Power-Efficient Address Mapping

for GPUs

Yuxi Liu, Xia Zhao, Magnus Jahre, Zhenlin Wang,
 Xiaolin Wang, Yingwei Luo, Lieven Eeckhout

Talk Outline

➤ Background and Motivation
➤ Window-based Entropy Model
➤ Analyzing Entropy Distribution for GPU Workloads
➤ PAE and FAE Address Mapping Schemes
➤ Evaluation

Shannon Entropy

➤ It quantifies the amount of information contained

 in a sequence of values.

Shannon Entropy

➤ It quantifies the amount of information contained

 in a sequence of values.

Informally, a value that changes

1. frequently contains lots of information and has high entropy

1. rarely contains little information and has low entropy

DRAM Architecture

Parallel Channels

Parallel
 Banks

➤ Exploit Parallelism
for banks and channels

DRAM Architecture

Parallel Channels

Parallel
 Banks

➤ Exploit Parallelism
for banks and channels

Row

Column

Row Buffer

➤ Exploit Locality

for rows

Address Bit Entropy Distribution

Memory
Address

E
nt

ro
py

LSBMSB

Address Bit Entropy Distribution

Memory
Address

E
nt

ro
py

LSBMSB

CPU

Row Column
Channel
and Bank

➤ Per-bit entropy for
addresses in CPUs is
monotonic

Address Bit Entropy Distribution

Memory
Address

E
nt

ro
py

LSBMSB

Row Column

CPU

➤ Per-bit entropy for
addresses in CPUs is
monotonic

Entropy
Valley

GPU
➤ Entropy Valley for

addresses in GPUs

Channel
and Bank

Why Entropy Valley for GPUs?

➤ GPU thread organization: multi-dimensional structures
● Grid, Block, Warp, Thread

➤ DRAM hardware organization: multi-dimensional structures
● Channel, Bank, Row, Column

Why Entropy Valley for GPUs?

➤ GPU thread organization: multi-dimensional structures
● Grid, Block, Warp, Thread

➤ DRAM hardware organization: multi-dimensional structures
● Channel, Bank, Row, Column

Once these two organizations combine unfavorably,

Entropy valleys will occur

X-dimension

Y-
D

im
en

si
on

70

0
7

GPU Address Behavior (Case 1)

X-dimension

Y-
D

im
en

si
on

70

0
7

GPU Address Behavior (Case 1)

Row-Major Thread
Block Allocation

Dimension-related index
 Example: i = threadIdx.y * blockDim.x + threadIdx.x

X-dimension

Y-
D

im
en

si
on

70

0
7

GPU Address Behavior (Case 1)

TB-RM2

Row-Major Thread
Block Allocation

Dimension-related index
 Example: i = threadIdx.y * blockDim.x + threadIdx.x

X-dimension

Y-
D

im
en

si
on

70

0
7

GPU Address Behavior (Case 1)

TB-RM2

Row-Major Thread
Block Allocation

Dimension-related index
 Example: i = threadIdx.y * blockDim.x + threadIdx.x

[2,7]
[2,6]

[2,5]

[2,4]
[2,3]

[2,2]
[2,1]
[2,0]

[y, x]

…0100 11 ...
…0100 10 ...

…0100 01 ...

…0100 00 ...
…0101 11 ...

…0101 10 ...
…0101 01 ...
...0101 00 ...

Address

8
7

6

5
4

3
2
1

Req.
ID

Channel
Distribution

Ch-0: 1, 5

Ch-1: 2, 6
Ch-2: 3, 7

Ch-3: 4, 8

X-dimension

Y-
D

im
en

si
on

70

0
7

GPU Address Behavior (Case 1)

TB-RM2

Row-Major Thread
Block Allocation

Dimension-related index
 Example: i = threadIdx.y * blockDim.x + threadIdx.x

[2,7]
[2,6]

[2,5]

[2,4]
[2,3]

[2,2]
[2,1]
[2,0]

[y, x]

…0100 11 ...
…0100 10 ...

…0100 01 ...

…0100 00 ...
…0101 11 ...

…0101 10 ...
…0101 01 ...
...0101 00 ...

Address

8
7

6

5
4

3
2
1

Req.
ID

X-dimension

Y-
D

im
en

si
on

70

0
7

GPU Address Behavior (Case 2)

X-dimension

Y-
D

im
en

si
on

70

0
7

GPU Address Behavior (Case 2)

Column-Major Thread
Block Allocation

Dimension-related index
 Example: i = threadIdx.x * blockDim.y + threadIdx.y

X-dimension

Y-
D

im
en

si
on

70

0
7

GPU Address Behavior (Case 2)

TB-CM0

Column-Major Thread
Block Allocation

Dimension-related index
 Example: i = threadIdx.x * blockDim.y + threadIdx.y

X-dimension

Y-
D

im
en

si
on

70

0
7

GPU Address Behavior (Case 2)

TB-CM0

Column-Major Thread
Block Allocation

Dimension-related index
 Example: i = threadIdx.x * blockDim.y + threadIdx.y

[7,0]
[6,0]

[5,0]

[4,0]
[3,0]

[2,0]
[1,0]
[0,0]

[y, x]

…1110 00 ...
…1100 00 ...

…1010 00 ...

…1000 00 ...
…0110 00 ...

…0100 00 ...
…0010 00 ...
...0000 00 ...

Address

8
7

6

5
4

3
2
1

Req.
ID

Channel
Distribution

Ch-0: 1 to 8

Ch-1: None

Ch-2: None

Ch-3: None

X-dimension

Y-
D

im
en

si
on

70

0
7

GPU Address Behavior (Case 2)

TB-CM0

Column-Major Thread
Block Allocation

Dimension-related index
 Example: i = threadIdx.x * blockDim.y + threadIdx.y

[7,0]
[6,0]

[5,0]

[4,0]
[3,0]

[2,0]
[1,0]
[0,0]

[y, x]

…1110 00 ...
…1100 00 ...

…1010 00 ...

…1000 00 ...
…0110 00 ...

…0100 00 ...
…0010 00 ...
...0000 00 ...

Address

8
7

6

5
4

3
2
1

Req.
ID

Channel Imbalance of NW benchmark

GPU Workloads’ Entropy

➤ GPU’s Entropy
● Memory requests are highly interleaved
● Requests from single TB co-exist : Intra-TB Entropy
● Requests from concurrent TBs co-exist : Inter-TB Entropy

How to quantify the address entropy for GPU workloads?

➤ CPU’s Entropy
● Memory request ordering
● Bit Flip Rate

GPU Workloads’ Entropy

➤ Window-based Entropy
● Motivation: capture coexisting memory requests
● Accounts for both Intra- and Inter-TB entropy

GPU Workloads’ Entropy

➤ BVR: Bit Value Rate
➤ p*

BVR : probability of each BVR value
➤ W : window size
➤ Hi

W : entropy value of Window-i
➤ H* : the average entropy of all windows

➤ Window-based Entropy
● Motivation: capture coexisting memory requests
● Accounts for both Intra- and Inter-TB entropy

Window-based Entropy

BVR = 100%

BVR = 0%

Window #

#BVR 100% TBs

#BVR 0% TBs

Window Entropy

1 32 4 5 76 8

Window-based Entropy #1

BVR = 100%

BVR = 0%

Window # 1

#BVR 100% TBs 0

#BVR 0% TBs 2

Window Entropy 0

1 32 4 5 76 8

Window-based Entropy #2

BVR = 100%

BVR = 0%

Window # 1 2

#BVR 100% TBs 0 1

#BVR 0% TBs 2 1

Window Entropy 0 1

1 32 4 5 76 8

Window-based Entropy #3

BVR = 100%

BVR = 0%

Window # 1 2 3

#BVR 100% TBs 0 1 2

#BVR 0% TBs 2 1 0

Window Entropy 0 1 0

1 32 4 5 76 8

Window-based Entropy #4

BVR = 100%

BVR = 0%

Window # 1 2 3 4

#BVR 100% TBs 0 1 2 1

#BVR 0% TBs 2 1 0 1

Window Entropy 0 1 0 1

1 32 4 5 76 8

Window-based Entropy #5

BVR = 100%

BVR = 0%

Window # 1 2 3 4 5

#BVR 100% TBs 0 1 2 1 0

#BVR 0% TBs 2 1 0 1 2

Window Entropy 0 1 0 1 0

1 32 4 5 76 8

Window-based Entropy #6

BVR = 100%

BVR = 0%

Window # 1 2 3 4 5 6

#BVR 100% TBs 0 1 2 1 0 1

#BVR 0% TBs 2 1 0 1 2 1

Window Entropy 0 1 0 1 0 1

1 32 4 5 76 8

Window-based Entropy #7

BVR = 100%

BVR = 0%

Window # 1 2 3 4 5 6 7

#BVR 100% TBs 0 1 2 1 0 1 2

#BVR 0% TBs 2 1 0 1 2 1 0

Window Entropy 0 1 0 1 0 1 0

1 32 4 5 76 8

Window-based Entropy #7

BVR = 100%

BVR = 0%

Window # 1 2 3 4 5 6 7

#BVR 100% TBs 0 1 2 1 0 1 2

#BVR 0% TBs 2 1 0 1 2 1 0

Window Entropy 0 1 0 1 0 1 0

1 32 4 5 76 8

Window Size = 2
H* = 3/7 = 0.43

Window-based Entropy (Size = 4)

BVR = 100%

BVR = 0%

Window # 1 2 3 4 5

#BVR 100% TBs 2 2 2 2 2

#BVR 0% TBs 2 2 2 2 2

Window Entropy 1 1 1 1 1

1 32 4 5 76 8

Window Size = 4
H* = 5/5 = 1

How to Choose Window Size?

➤ Window size is affected by:
● Application, i.e, each TB’s hardware requirement
● GPU architecture, i.e, #SMs, warp scheduling policy

➤ Maximum window size is GPU hardware capacity
● #SMs
● Hardware resources / SM

➤ Warp scheduling policy affects concurrent running TBs
● GTO policy: #SMs * 1
● LRR policy: #SMs * (TBs/SM)

Entropy Valley Workloads

MT LU GS NW LPS

SC SRAD2 DWT2D HS SP

➤ Channel & Bank selection

Entropy Valleys of Applications and Kernels

SRAD2 Kernel-1 of SRAD2

➤ Similar behavior

DWT2D

➤ Different behavior

Kernel-1 of DWT2D

Address Mapping

➤ Entropy valley in the channel or bank bits limit parallelism

➤ High GPU’s memory bandwidth depends on
Memory-level parallelism (MLP)
● Channel-level Parallelism (CLP)
● Bank-level Parallelism (BLP)

Get Out of the Valley:
 Power-Efficient Address Mapping for GPUs

BIM Abstraction

➤ Binary Invertible Matrix (BIM) is a generic abstraction for
representing all address mapping schemes
● Matrix-vector product
● Invertible criterion: 1-to-1 mapping
● Multiplication maps to bit-wise AND-operation
● Addition maps to XOR-operation

0 1 0 0 0

0 0 1 0 0

1 1 1 1 0

0 1 1 0 1

1 0 0 0 0

r1
in r1

in

r0
in r0

in

cin r2
in⊕r1

in⊕r0
in⊕cin

bin r1
in⊕r0

in⊕bin

r2
in r2

in

Remap Address Mapping (RMP)

Row r2 Row r1 Row r0 Channel c Bank b

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

R2 R1 R0 C B

➤ RMP scheme: remap high and low bits

Remap Address Mapping (RMP)

Row r2 Row r1 Row r0 Channel c Bank b

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

R2 R1 R0 C B

Row r2 Row r1Row r0Channel c Bank b
1

10

0

➤ RMP scheme: remap high and low bits

Permutation-Based Address Mapping (PM)

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

Row r2 Row r1 Row r0 Channel c Bank b R2 R1 R0 C B

➤ PM scheme: XOR channel or bank bits with a row bits

Permutation-Based Address Mapping (PM)

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

Row r2 Row r1 Row r0 Channel c Bank b R2 R1 R0 C B

Row r2 Row r1 Row r0 Channel c Bank b

XOR

1 1

➤ PM scheme: XOR channel or bank bits with a row bits

PM Address mapping

➤ Concentrate row bits’
entropy into channel
and bank bits

Row Channel Bank Column Block

Row Channel Bank Column Block

 Bit-wise XOR with least significant row bits

Drawback:

1. Low entropy of row bits
2. Application-dependent

Broad Address Mapping

➤ Harvest entropy across a broad selection of address bits

1. Page Address Entropy (PAE): gathers entropy from page
address bits to generate new bank and channel bits

1. Full Address Entropy (FAE): gathers entropy from full
address bits to generate new bank and channel bits

1. All Address Mapping (ALL): gathers entropy from full
address bits to generate full bits

PAE Address Mapping

Row Channel Bank Column Block
➤ Input: page address

bits, i.e., channel,
bank, row

Binary Invertible Matrix (BIM)

Row Channel Bank Column Block

➤ Output: channel and
bank bits

FAE Address Mapping

Row Channel Bank Column Block
➤ Input: full address

bits

Binary Invertible Matrix (BIM)

Row Channel Bank Column Block

➤ Output: channel and
bank bits

ALL Address Mapping

Row Channel Bank Column Block
➤ Input: full address

bits

Binary Invertible Matrix (BIM)

Row Channel Bank Column Block

➤ Output: full address
bits

Experimental Methodology

I GPU Architecture:
I 12 SMs running at 1.4Ghz
I Max TBs per SM is 8, Max warps per SM is 48

I 1GB Hynix’ GDDR5, similar with MICRO111

Row ColBank BlockColB Ch
05678910111415171829

I Address mapping schemes:
I BASE scheme
I RMP scheme
I PM scheme
I PAE, FAE, ALL schemes

1Minimalist Open-page: A DRAM Page-mode Scheduling Policy for the
Many-core Era

Performance vs. DRAM power consumption

1.0 1.1 1.2 1.3 1.4
Normalized DRAM power

0.8

1.0
N

or
m

al
iz

ed
ex

ec
ut

io
n

ti
m

e
BASE

PM
RMP

PAE FAE ALL

I PAE is most power-efficient, achieving an average 1.52x
speedup while consuming 3% more DRAM power

I FAE and ALL are slightly performance-wise (1.56x and 1.54x
speedup) but consume 35% and 45% more DRAM power,
respectively

Performance Improvement

MT LU0

2

4

6

S
p

ee
du

p

GS NW LPS SC SRAD2 DWT2D HS SP HMEAN0

1

2

S
p

ee
du

p

BASE PM RMP PAE FAE ALL

I PAE, FAE and ALL lead to dramatic speedups averaging to
1.52x, 1.56x and 1.54x, respectively

DRAM Power Consumption

MT LU GS NW LPS SC SRAD2 DWT2D HS SP AVG0

20

40

60

D
R

A
M

P
ow

er
B

re
ak

do
w

n
(W

)

BASE
PM

RMP
PAE

FAE

ALL

background activate read write

I Address mapping primarily affects the activate power

I PAE has a small increase in DRAM power consumption by 3%
on average

I FAE and ALL lead to a substantial increase in DRAM power
consumption, by 35% and 45% on average

Total System (GPU+DRAM) Power Consumption

MT LU GS NW LPS SC SRAD2 DWT2D HS SP HMEAN0

2

4

P
er

fo
rm

an
ce

p
er

W
at

t

BASE PM RMP PAE FAE ALL

I PAE, FAE and ALL increase system power consumption
increases by 9%, 15% and 18% on average

I PAE, FAE and ALL improve performance per Watt by 1.39x,
1.36x and 1.31x on average respectively

NoC Packet Latency and LLC Miss Rate

MT LU GS NW LPS SC SRAD2 DWT2D HS SP AVG0

100

200

A
vg

.
N

oC
P

ac
ke

t
L

at
en

cy
(C

yc
le

s)

BASE PM RMP PAE FAE ALL

MT LU GS NW LPS SC SRAD2 DWT2D HS SP AVG0%

50%

100%

L
L

C
M

is
s

R
at

e
(%

)

BASE PM RMP PAE FAE ALL

I Serialized memory access stream leads to a dramatically high
NoC packet latency and LLC miss rate

I PAE, FAE and ALL distribute the accesses uniformly and
ultimately lead to a dramatic reduction

Memory Level Parallelism

MT LU GS NW LPS SC SRAD2 DWT2D HS SP AVG0

1

2

3

L
L

C
L

ev
el

P
ar

al
le

lis
m

BASE PM RMP PAE FAE ALL

MT LU GS NW LPS SC SRAD2 DWT2D HS SP AVG0.0

0.5

1.0

1.5

C
ha

nn
el

L
ev

el
P

ar
al

le
lis

m

BASE PM RMP PAE FAE ALL

MT LU GS NW LPS SC SRAD2 DWT2D HS SP AVG0.0

2.5

5.0

7.5

B
an

k
L

ev
el

P
ar

al
le

lis
m

BASE PM RMP PAE FAE ALL

I PAE, FAE and ALL improve memory level parallelism
including LLC level, channel level and bank level parallelism

Row Buffer Hit Rates

I Tradeoff between bank level parallelism and row buffer locality

MT LU GS NW LPS SC SRAD2 DWT2D HS SP AVG0%

50%

100%

R
ow

B
uf

fe
rH

it
R

at
e

(%
) BASE PM RMP PAE FAE ALL

I PAE creates sufficiently good load balancing while keeping
good-locality requests within the same bank

I FAE sometimes reduces row buffer hit rates as it distributes
good-locality requests to different banks

Sensitivity

12 SMs conv. DRAM 24 SMs conv. DRAM 48 SMs conv. DRAM 64 SMs 3D DRAM0.0

0.5

1.0

1.5
S

p
ee

du
p

BASE PM RMP PAE FAE ALL

I PAE, FAE and ALL consistently improve performance across
SM counts (from 12 to 48)

I 3D stacked memory system with 64 SMs:
I PAE, FAE and ALL still achieve high performance
I RMP performs similarly to BASE since it cannot have enough

high entropy bits to achieve good load balancing

Conclusions

I Provided a window-based entropy analysis tailored for the
highly concurrent memory request behavior in
GPU-compute workloads

I Observed that GPU-compute workloads exhibit entropy
valleys distributed throughout the lower order address bits

I Developed Page Address Entropy (PAE) mapping scheme
which provide significantly higher performance and
power-efficiency than previously proposed address
mapping schemes

Thank you!

Questions?

	Conclusions

